مقالات
Sam West Sam West
0 Course Enrolled • 0 Course CompletedBiography
試験の準備方法-効率的なData-Engineer-Associate日本語版参考資料試験-便利なData-Engineer-Associate認証pdf資料
2025年Xhs1991の最新Data-Engineer-Associate PDFダンプおよびData-Engineer-Associate試験エンジンの無料共有:https://drive.google.com/open?id=1clTv2Ul3ASa3ZcOwlksDfX_pMpDsRMwI
Xhs1991にたくさんのIT専門人士がいって、弊社の問題集に社会のITエリートが認定されて、弊社の問題集は試験の大幅カーバして、合格率が100%にまで達します。弊社のみたいなウエブサイトが多くても、彼たちは君の学習についてガイドやオンラインサービスを提供するかもしれないが、弊社はそちらにより勝ちます。Xhs1991は同業の中でそんなに良い地位を取るの原因は弊社のかなり正確な試験の練習問題と解答そえに迅速の更新で、このようにとても良い成績がとられています。そして、弊社が提供した問題集を安心で使用して、試験を安心で受けて、君のAmazon Data-Engineer-Associate認証試験の100%の合格率を保証しますす。
Xhs1991のData-Engineer-Associate問題集は素晴らしい参考資料です。この問題集は絶対あなたがずっと探しているものです。これは受験生の皆さんのために特別に作成し出された試験参考書です。この参考書は短い時間で試験に十分に準備させ、そして楽に試験に合格させます。試験のためにあまりの時間と精力を無駄にしたくないなら、Xhs1991のData-Engineer-Associate問題集は間違いなくあなたに最もふさわしい選択です。この資料を使用すると、あなたの学習効率を向上させ、多くの時間を節約することができます。
>> Data-Engineer-Associate日本語版参考資料 <<
Data-Engineer-Associate試験の準備方法|ハイパスレートのData-Engineer-Associate日本語版参考資料試験|最高のAWS Certified Data Engineer - Associate (DEA-C01)認証pdf資料
Xhs1991のData-Engineer-Associate問題集はあなたを楽に試験の準備をやらせます。それに、もし最初で試験を受ける場合、試験のソフトウェアのバージョンを使用することができます。これは完全に実際の試験雰囲気とフォーマットをシミュレートするソフトウェアですから。このソフトで、あなたは事前に実際の試験を感じることができます。そうすれば、実際のData-Engineer-Associate試験を受けるときに緊張をすることはないです。ですから、心のリラックスした状態で試験に出る問題を対応することができ、あなたの正常なレベルをプレイすることもできます。
Amazon AWS Certified Data Engineer - Associate (DEA-C01) 認定 Data-Engineer-Associate 試験問題 (Q28-Q33):
質問 # 28
A company implements a data mesh that has a central governance account. The company needs to catalog all data in the governance account. The governance account uses AWS Lake Formation to centrally share data and grant access permissions.
The company has created a new data product that includes a group of Amazon Redshift Serverless tables. A data engineer needs to share the data product with a marketing team. The marketing team must have access to only a subset of columns. The data engineer needs to share the same data product with a compliance team. The compliance team must have access to a different subset of columns than the marketing team needs access to.
Which combination of steps should the data engineer take to meet these requirements? (Select TWO.)
- A. Share the Amazon Redshift data share to the Amazon Redshift Serverless workgroup in the marketing team's account.
- B. Create views of the tables that need to be shared. Include only the required columns.
- C. Create an Amazon Redshift data than that includes the tables that need to be shared.
- D. Create an Amazon Redshift managed VPC endpoint in the marketing team's account. Grant the marketing team access to the views.
- E. Share the Amazon Redshift data share to the Lake Formation catalog in the governance account.
正解:A、B
解説:
The company is using a data mesh architecture with AWS Lake Formation for governance and needs to share specific subsets of data with different teams (marketing and compliance) using Amazon Redshift Serverless.
Option A: Create views of the tables that need to be shared. Include only the required columns.
Creating views in Amazon Redshift that include only the necessary columns allows for fine-grained access control. This method ensures that each team has access to only the data they are authorized to view.
Option E: Share the Amazon Redshift data share to the Amazon Redshift Serverless workgroup in the marketing team's account.
Amazon Redshift data sharing enables live access to data across Redshift clusters or Serverless workgroups. By sharing data with specific workgroups, you can ensure that the marketing team and compliance team each access the relevant subset of data based on the views created.
Option B (creating a Redshift data share) is close but does not address the fine-grained column-level access.
Option C (creating a managed VPC endpoint) is unnecessary for sharing data with specific teams.
Option D (sharing with the Lake Formation catalog) is incorrect because Redshift data shares do not integrate directly with Lake Formation catalogs; they are specific to Redshift workgroups.
Reference:
Amazon Redshift Data Sharing
AWS Lake Formation Documentation
質問 # 29
A company has multiple applications that use datasets that are stored in an Amazon S3 bucket. The company has an ecommerce application that generates a dataset that contains personally identifiable information (PII).
The company has an internal analytics application that does not require access to the PII.
To comply with regulations, the company must not share PII unnecessarily. A data engineer needs to implement a solution that with redact PII dynamically, based on the needs of each application that accesses the dataset.
Which solution will meet the requirements with the LEAST operational overhead?
- A. Use AWS Glue to transform the data for each application. Create multiple copies of the dataset. Give each dataset copy the appropriate level of redaction for the needs of the application that accesses the copy.
- B. Create an S3 Object Lambda endpoint. Use the S3 Object Lambda endpoint to read data from the S3 bucket. Implement redaction logic within an S3 Object Lambda function to dynamically redact PII based on the needs of each application that accesses the data.
- C. Create an S3 bucket policy to limit the access each application has. Create multiple copies of the dataset.
Give each dataset copy the appropriate level of redaction for the needs of the application that accesses the copy. - D. Create an API Gateway endpoint that has custom authorizers. Use the API Gateway endpoint to read data from the S3 bucket. Initiate a REST API call to dynamically redact PII based on the needs of each application that accesses the data.
正解:B
解説:
Option B is the best solution to meet the requirements with the least operational overhead because S3 Object Lambda is a feature that allows you to add your own code to process data retrieved from S3 before returning it to an application. S3 Object Lambda works with S3 GET requests and can modify both the object metadata and the object data. By using S3 Object Lambda, you can implement redaction logic within an S3 Object Lambda function to dynamically redact PII based on the needs of each application that accesses the data. This way, you can avoid creating and maintaining multiple copies of the dataset with different levels of redaction.
Option A is not a good solution because it involves creating and managing multiple copies of the dataset with different levels of redaction for each application. This option adds complexity and storage cost to the data protection process and requires additional resources and configuration. Moreover, S3 bucket policies cannot enforce fine-grained data access control at the row and column level, so they are not sufficient to redact PII.
Option C is not a good solution because it involves using AWS Glue to transform the data for each application. AWS Glue is a fully managed service that can extract, transform, and load (ETL) data from various sources to various destinations, including S3. AWS Glue can also convert data to different formats, such as Parquet, which is a columnar storage format that is optimized for analytics. However, in this scenario, using AWS Glue to redact PII is not the best option because it requires creating and maintaining multiple copies of the dataset with different levels of redaction for each application. This option also adds extra time and cost to the data protection process and requires additional resources and configuration.
Option D is not a good solution because it involves creating and configuring an API Gateway endpoint that has custom authorizers. API Gateway is a service that allows youto create, publish, maintain, monitor, and secure APIs at any scale. API Gateway can also integrate with other AWS services, such as Lambda, to provide custom logic for processing requests. However, in this scenario, using API Gateway to redact PII is not the best option because it requires writing and maintaining custom code and configuration for the API endpoint, the custom authorizers, and the REST API call. This option also adds complexity and latency to the data protection process and requires additional resources and configuration.
References:
AWS Certified Data Engineer - Associate DEA-C01 Complete Study Guide
Introducing Amazon S3 Object Lambda - Use Your Code to Process Data as It Is Being Retrieved from S3 Using Bucket Policies and User Policies - Amazon Simple Storage Service AWS Glue Documentation What is Amazon API Gateway? - Amazon API Gateway
質問 # 30
A data engineer needs to build an enterprise data catalog based on the company's Amazon S3 buckets and Amazon RDS databases. The data catalog must include storage format metadata for the data in the catalog.
Which solution will meet these requirements with the LEAST effort?
- A. Use scripts to scan data elements and to assign data classifications based on the format of the data.
- B. Use Amazon Macie to build a data catalog and to identify sensitive data elements. Collect the data format information from Macie.
- C. Use an AWS Glue crawler to build a data catalog. Use AWS Glue crawler classifiers to recognize the format of data and store the format in the catalog.
- D. Use an AWS Glue crawler to scan the S3 buckets and RDS databases and build a data catalog. Use data stewards to inspect the data and update the data catalog with the data format.
正解:C
解説:
To build an enterprise data catalog with metadata for storage formats, the easiest and most efficient solution is using an AWS Glue crawler. The Glue crawler can scan Amazon S3 buckets and Amazon RDS databases to automatically create a data catalog that includes metadata such as the schema and storage format (e.g., CSV, Parquet, etc.). By using AWS Glue crawler classifiers, you can configure the crawler to recognize the format of the data and store this information directly in the catalog.
* Option B: Use an AWS Glue crawler to build a data catalog. Use AWS Glue crawler classifiers to recognize the format of data and store the format in the catalog.This option meets the requirements with the least effort because Glue crawlers automate the discovery and cataloging of data from multiple sources, including S3 and RDS, while recognizing various file formats via classifiers.
Other options (A, C, D) involve additional manual steps, like having data stewards inspect the data, or using services like Amazon Macie that focus more on sensitive data detection rather than format cataloging.
References:
* AWS Glue Crawler Documentation
* AWS Glue Classifiers
質問 # 31
A data engineer needs to use AWS Step Functions to design an orchestration workflow. The workflow must parallel process a large collection of data files and apply a specific transformation to each file.
Which Step Functions state should the data engineer use to meet these requirements?
- A. Wait state
- B. Parallel state
- C. Map state
- D. Choice state
正解:C
解説:
Option C is the correct answer because the Map state is designed to process a collection of data in parallel by applying the same transformation to each element. The Map state can invoke a nested workflow for each element, which can be another state machine or a Lambda function. The Map state will wait until all the parallel executions are completed before moving to the next state.
Option A is incorrect because the Parallel state is used to execute multiple branches of logic concurrently, not to process a collection of data. The Parallel state can have different branches with different logic and states, whereas the Map state has only one branch that is applied to each element of the collection.
Option B is incorrect because the Choice state is used to make decisions based on a comparison of a value to a set of rules. The Choice state does not process any data or invoke any nested workflows.
Option D is incorrect because the Wait state is used to delay the state machine from continuing for a specified time. The Wait state does not process any data or invoke any nested workflows.
Reference:
AWS Certified Data Engineer - Associate DEA-C01 Complete Study Guide, Chapter 5: Data Orchestration, Section 5.3: AWS Step Functions, Pages 131-132 Building Batch Data Analytics Solutions on AWS, Module 5: Data Orchestration, Lesson 5.2: AWS Step Functions, Pages 9-10 AWS Documentation Overview, AWS Step Functions Developer Guide, Step Functions Concepts, State Types, Map State, Pages 1-3
質問 # 32
A company has used an Amazon Redshift table that is named Orders for 6 months. The company performs weekly updates and deletes on the table. The table has an interleaved sort key on a column that contains AWS Regions.
The company wants to reclaim disk space so that the company will not run out of storage space. The company also wants to analyze the sort key column.
Which Amazon Redshift command will meet these requirements?
- A. VACUUM SORT ONLY Orders
- B. VACUUM REINDEX Orders
- C. VACUUM DELETE ONLY Orders
- D. VACUUM FULL Orders
正解:B
解説:
Amazon Redshift is a fully managed, petabyte-scale data warehouse service that enables fast and cost-effective analysis of large volumes of data. Amazon Redshift uses columnar storage, compression, and zone maps to optimize the storage and performance of data. However, over time, as data is inserted, updated, or deleted, the physical storage of data can become fragmented, resulting in wasted disk space and degraded query performance. To address this issue, Amazon Redshift provides the VACUUM command, which reclaims disk space and resorts rows in either a specified table or all tables in the current schema1.
The VACUUM command has four options: FULL, DELETE ONLY, SORT ONLY, and REINDEX. The option that best meets the requirements of the question is VACUUM REINDEX, which re-sorts the rows in a table that has an interleaved sort key and rewritesthe table to a new location on disk. An interleaved sort key is a type of sort key that gives equal weight to each column in the sort key, and stores the rows in a way that optimizes the performance of queries that filter by multiple columns in the sort key. However, as data is added or changed, the interleaved sort order can become skewed, resulting in suboptimal query performance. The VACUUM REINDEX option restores the optimal interleaved sort order and reclaims disk space by removing deleted rows. This option also analyzes the sort key column and updates the table statistics, which are used by the query optimizer to generate the most efficient query execution plan23.
The other options are not optimal for the following reasons:
A: VACUUM FULL Orders. This option reclaims disk space by removing deleted rows and resorts the entire table. However, this option is not suitable for tables that have an interleaved sort key, as it does not restore the optimal interleaved sort order. Moreover, this option is the most resource-intensive and time-consuming, as it rewrites the entire table to a new location on disk.
B: VACUUM DELETE ONLY Orders. This option reclaims disk space by removing deleted rows, but does not resort the table. This option is not suitable for tables that have any sort key, as it does not improve the query performance by restoring the sort order. Moreover, this option does not analyze the sort key column and update the table statistics.
D: VACUUM SORT ONLY Orders. This option resorts the entire table, but does not reclaim disk space by removing deleted rows. This option is not suitable for tables that have an interleaved sort key, as it does not restore the optimal interleaved sort order. Moreover, this option does not analyze the sort key column and update the table statistics.
References:
1: Amazon Redshift VACUUM
2: Amazon Redshift Interleaved Sorting
3: Amazon Redshift ANALYZE
質問 # 33
......
Data-Engineer-Associate認定資格を取得できれば、その地域で仕事をうまくこなせるので、簡単かつ迅速に昇進できます。最新のData-Engineer-Associateクイズトレントは、Amazonあなたのキャリアの成功に直接導くことができます。当社の資料は、実際の運用試験の雰囲気をシミュレートし、試験をシミュレートできます。ダウンロードとインストールでは、コンピューターとData-Engineer-Associateテスト準備を使用するユーザーの量に制限はありません。 Data-Engineer-Associate試験トレントを習得するのに最適な学習方法を選択できるため、最高のサービスを提供します。私たちを信じて、Data-Engineer-Associate試験問題を購入してください。
Data-Engineer-Associate認証pdf資料: https://www.xhs1991.com/Data-Engineer-Associate.html
材料の傾向は必ずしも簡単に予測できるわけではありませんが、10年の経験から予測可能なパターンを持っているため、次のData-Engineer-Associate準備材料AWS Certified Data Engineer - Associate (DEA-C01)で発生する知識のポイントを正確に予測することがよくあります、Amazon Data-Engineer-Associate日本語版参考資料 現在あなたもこのような珍しい資料を得られます、当社のData-Engineer-Associate試験トレントを購入する意思がある場合は、更新システムを楽しむ権利があることは間違いありません、Amazon Data-Engineer-Associate日本語版参考資料 時々に、行動は言葉より大切です、だから、これからData-Engineer-Associateトレント準備から始めましょう、Data-Engineer-Associate学習テストは、シラバスの変更と、Amazon歴史的な質問や業界の動向に基づいた理論と実践の最新の進展に応じて、何百人もの専門家によって改訂された高品質の製品でした。
入り口の感じる部分を強めに抉っていきながら一気に深々と突きData-Engineer-Associate上げて、奥処を大きく膨れた先端で丁寧に擦り付ける、クロノ神は農耕神である、材料の傾向は必ずしも簡単に予測できるわけではありませんが、10年の経験から予測可能なパターンを持っているため、次のData-Engineer-Associate準備材料AWS Certified Data Engineer - Associate (DEA-C01)で発生する知識のポイントを正確に予測することがよくあります。
AWS Certified Data Engineer - Associate (DEA-C01)に合格するプロフェッショナルData-Engineer-Associate日本語版参考資料 - エキスパートによる推奨
現在あなたもこのような珍しい資料を得られます、当社のData-Engineer-Associate試験トレントを購入する意思がある場合は、更新システムを楽しむ権利があることは間違いありません、時々に、行動は言葉より大切です、だから、これからData-Engineer-Associateトレント準備から始めましょう。
- 試験の準備方法-便利なData-Engineer-Associate日本語版参考資料試験-素晴らしいData-Engineer-Associate認証pdf資料 👽 ▶ www.passtest.jp ◀に移動し、⇛ Data-Engineer-Associate ⇚を検索して無料でダウンロードしてくださいData-Engineer-Associate模擬問題集
- Data-Engineer-Associate試験勉強過去問 🍽 Data-Engineer-Associate PDF 😴 Data-Engineer-Associate資格認定試験 ✅ 時間限定無料で使える[ Data-Engineer-Associate ]の試験問題は➤ www.goshiken.com ⮘サイトで検索Data-Engineer-Associate受験料過去問
- 試験の準備方法-便利なData-Engineer-Associate日本語版参考資料試験-素晴らしいData-Engineer-Associate認証pdf資料 🏫 ▷ www.topexam.jp ◁で【 Data-Engineer-Associate 】を検索し、無料でダウンロードしてくださいData-Engineer-Associate試験関連赤本
- かんたん合格 Data-Engineer-Associate 問題集 Amazon 認定試験ガイドブック 🟨 《 www.goshiken.com 》サイトにて➠ Data-Engineer-Associate 🠰問題集を無料で使おうData-Engineer-Associate資格練習
- かんたん合格 Data-Engineer-Associate 問題集 Amazon 認定試験ガイドブック 🐵 最新【 Data-Engineer-Associate 】問題集ファイルは【 www.passtest.jp 】にて検索Data-Engineer-Associate日本語版試験解答
- Data-Engineer-Associate最新日本語版参考書 🐡 Data-Engineer-Associate学習資料 💆 Data-Engineer-Associate認定試験トレーリング 🕞 ウェブサイト【 www.goshiken.com 】から✔ Data-Engineer-Associate ️✔️を開いて検索し、無料でダウンロードしてくださいData-Engineer-Associate認定試験トレーリング
- Data-Engineer-Associate PDF 🔨 Data-Engineer-Associate日本語版問題解説 🦪 Data-Engineer-Associate最新試験情報 🍛 時間限定無料で使える【 Data-Engineer-Associate 】の試験問題は✔ www.passtest.jp ️✔️サイトで検索Data-Engineer-Associate資格認定試験
- Data-Engineer-Associate模擬問題集 ⛽ Data-Engineer-Associate技術試験 🔅 Data-Engineer-Associate日本語版問題解説 🦛 サイト▷ www.goshiken.com ◁で⇛ Data-Engineer-Associate ⇚問題集をダウンロードData-Engineer-Associate試験関連赤本
- 一番優秀なData-Engineer-Associate日本語版参考資料試験-試験の準備方法-ハイパスレートのData-Engineer-Associate認証pdf資料 🎂 ⇛ Data-Engineer-Associate ⇚を無料でダウンロード➠ www.passtest.jp 🠰で検索するだけData-Engineer-Associate PDF
- 便利なData-Engineer-Associate日本語版参考資料 - 合格スムーズData-Engineer-Associate認証pdf資料 | 大人気Data-Engineer-Associate受験記対策 AWS Certified Data Engineer - Associate (DEA-C01) 🥊 今すぐ➡ www.goshiken.com ️⬅️で➡ Data-Engineer-Associate ️⬅️を検索し、無料でダウンロードしてくださいData-Engineer-Associate PDF
- 信頼できるData-Engineer-Associate日本語版参考資料 - 資格試験のリーダー - 有効的なData-Engineer-Associate認証pdf資料 👄 ▛ www.it-passports.com ▟で使える無料オンライン版➡ Data-Engineer-Associate ️⬅️ の試験問題Data-Engineer-Associate学習教材
- Data-Engineer-Associate Exam Questions
- archicourses.com tmortoza.com virtualschool.com.pk www.tutorspace.mrkhaled.xyz course.alsojag.com bkrmart.net fahrenheit-eng.com alihtidailalislam.com ekadantha.in techtopiabd.com
P.S.Xhs1991がGoogle Driveで共有している無料の2025 Amazon Data-Engineer-Associateダンプ:https://drive.google.com/open?id=1clTv2Ul3ASa3ZcOwlksDfX_pMpDsRMwI